Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Adicionar filtros

Tipo de documento
Intervalo de ano
1.
researchsquare; 2022.
Preprint em Inglês | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2146712.v1

RESUMO

Almost three years into the SARS-CoV-2 pandemic, hybrid immunity is highly prevalent worldwide and more protective than vaccination or prior infection alone. Given emerging resistance of variant strains to neutralizing antibodies (nAb), it is likely that T cells contribute to this protection. To understand how sequential SARS-CoV-2 infection and mRNA-vectored SARS-CoV-2 spike (S) vaccines affect T cell clonotype-level expansion kinetics, we identified and cross-referenced TCR sequences from thousands of S-reactive single cells against deeply sequenced peripheral blood TCR repertoires longitudinally collected from persons during COVID-19 convalescence through booster vaccination. Successive vaccinations recalled memory T cells and elicited antigen-specific T cell clonotypes not detected after infection. Vaccine-related recruitment of novel clonotypes and the expansion of S-specific clones were most strongly observed for CD8+ T cells. Severe COVID-19 illness was associated with a more diverse CD4+ T cell response to SARS-CoV-2 both prior to and after mRNA vaccination, suggesting imprinting of CD4+ T cells by severe infection. TCR sequence similarity search algorithms revealed myriad public TCR clusters correlating with human leukocyte antigen (HLA) alleles. Selected TCRs from distinct clusters functionally recognized S in the predicted HLA context, with fine viral peptide requirements differing between TCRs. Most subjects tested had S-specific T cells in the nasal mucosa after a 3rd mRNA vaccine dose. The blood and nasal T cell responses to vaccination revealed by clonal tracking were more heterogeneous than nAb boosts. Analysis of bulk and single cell TCR sequences reveals T cell kinetics and diversity at the clonotype level, without requiring prior knowledge of T cell epitopes or HLA restriction, providing a roadmap for rapid assessment of T cell responses to emerging pathogens.


Assuntos
COVID-19
2.
medrxiv; 2021.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2021.12.08.21267444

RESUMO

BackgroundVaccination against SARS-CoV-2 is a highly effective strategy to protect against infection, which is predominantly mediated by vaccine-induced antibodies. Postvaccination antibodies are robustly produced by those with inflammatory bowel disease (IBD) even on immune-modifying therapies but are blunted by anti-TNF therapy. In contrast, T-cell response which primarily determines long-term efficacy against disease progression,, is less well understood. We aimed to assess the post-vaccination T-cell response and its relationship to antibody responses in patients with inflammatory bowel disease (IBD) on immune-modifying therapies. MethodsWe evaluated IBD patients who completed SARS-CoV-2 vaccination using samples collected at four time points (dose 1, dose 2, 2 weeks after dose 2, 8 weeks after dose 2). T-cell clonal analysis was performed by T-cell Receptor (TCR) immunosequencing. The breadth (number of unique sequences to a given protein) and depth (relative abundance of all the unique sequences to a given protein) of the T-cell clonal response were quantified using reference datasets and were compared to antibody responses. ResultsOverall, 303 subjects were included (55% female; 5% with prior COVID) (Table). 53% received BNT262b (Pfizer), 42% mRNA-1273 (Moderna) and 5% Ad26CoV2 (J&J). The Spike-specific clonal response peaked 2 weeks after completion of the vaccine regimen (3- and 5-fold for breadth and depth, respectively); no changes were seen for non-Spike clones, suggesting vaccine specificity. Reduced T-cell clonal depth was associated with chronologic age, male sex, and immunomodulator treatment. It was preserved by non-anti-TNF biologic therapies, and augmented clonal depth was associated with anti-TNF treatment. TCR depth and breadth were associated with vaccine type; after adjusting for age and gender, Ad26CoV2 (J&J) exhibited weaker metrics than mRNA-1273 (Moderna) (p=0.01 for each) or BNT262b (Pfizer) (p=0.056 for depth). Antibody and T-cell responses were only modestly correlated. While those with robust humoral responses also had robust TCR clonal expansion, a substantial fraction of patients with high antibody levels had only a minimal T-cell clonal response. ConclusionAge, sex and select immunotherapies are associated with the T-cell clonal response to SARS-CoV-2 vaccines, and T-cell responses are low in many patients despite high antibody levels. These factors, as well as differences seen by vaccine type may help guide reimmunization vaccine strategy in immune-impaired populations. Further study of the effects of anti-TNF therapy on vaccine responses are warranted.


Assuntos
Doenças Inflamatórias Intestinais
3.
medrxiv; 2021.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2021.03.19.21251426

RESUMO

Measuring the adaptive immune response to SARS-CoV-2 can enable the assessment of past infection as well as protective immunity and the risk of reinfection. While neutralizing antibody (nAb) titers are one measure of protection, such assays are challenging to perform at a large scale and the longevity of the SARS-CoV-2 nAb response is not fully understood. Here, we apply a T-cell receptor (TCR) sequencing assay that can be performed on a small volume standard blood sample to assess the adaptive T-cell response to SARS-CoV-2 infection. Samples were collected from a cohort of 302 individuals recovered from COVID-19 up to 6 months after infection. Previously published findings in this cohort showed that two commercially available SARS-CoV-2 serologic assays correlate well with nAb testing. We demonstrate that the magnitude of the SARS-CoV-2-specific T-cell response strongly correlates with nAb titer, as well as clinical indicators of disease severity including hospitalization, fever, or difficulty breathing. While the depth and breadth of the T-cell response declines during convalescence, the T-cell signal remains well above background with high sensitivity up to at least 6 months following initial infection. Compared to serology tests detecting binding antibodies to SARS-CoV-2 spike and nucleoprotein, the overall sensitivity of the TCR-based assay across the entire cohort and all timepoints was approximately 5% greater for identifying prior SARS-CoV-2 infection. Notably, the improved performance of T-cell testing compared to serology was most apparent in recovered individuals who were not hospitalized and were sampled beyond 150 days of their initial illness, suggesting that antibody testing may have reduced sensitivity in individuals who experienced less severe COVID-19 illness and at later timepoints. Finally, T-cell testing was able to identify SARS-CoV-2 infection in 68% (55/81) of convalescent samples having nAb titers below the lower limit of detection, as well as 37% (13/35) of samples testing negative by all three antibody assays. These results demonstrate the utility of a TCR-based assay as a scalable, reliable measure of past SARS-CoV-2 infection across a spectrum of disease severity. Additionally, the TCR repertoire may be useful as a surrogate for protective immunity with additive clinical value beyond serologic or nAb testing methods.


Assuntos
Febre , Síndrome Respiratória Aguda Grave , COVID-19
4.
medrxiv; 2020.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2020.11.09.20228023

RESUMO

Measuring the adaptive immune response after SARS-CoV-2 infection may improve our understanding of COVID-19 exposure and potential future protection or immunity. We analyzed T-cell and antibody signatures in a large population study of over 2,200 individuals from the municipality of Vo', Italy, including 70 PCR-confirmed COVID cases (24 asymptomatic, 37 symptomatic, 9 hospitalized). Blood samples taken 60 days after PCR diagnosis demonstrated 97% (68/70) of the latter subjects had a positive T-cell test result, higher than an antibody serology assay (77%; 54/70 of subjects) performed on the same samples. The depth and breadth of the T-cell response was associated with disease severity, with symptomatic and hospitalized COVID cases having significantly higher response than asymptomatic cases. In contrast, antibody levels at this convalescent time point were less informative as they did not correlate with disease severity. 45 additional suspected infections were identified based on T-cell response from the 2,220 subjects without confirmatory PCR tests. Among these, notably, subjects who reported symptoms or had household exposure to a PCR-confirmed infection presented a higher T-cell test positive rate. Taken together, these results establish that T cells are a sensitive, reliable and persistent measure of past SARS-CoV-2 infection.


Assuntos
COVID-19
5.
medrxiv; 2020.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2020.07.31.20165647

RESUMO

T cells are involved in the early identification and clearance of viral infections and also support the development of antibodies by B cells. This central role for T cells makes them a desirable target for assessing the immune response to SARS-CoV-2 infection. Here, we combined two high-throughput immune profiling methods to create a quantitative picture of the T-cell response to SARS-CoV-2. First, at the individual level, we deeply characterized 3 acutely infected and 58 recovered COVID-19 subjects by experimentally mapping their CD8 T-cell response through antigen stimulation to 545 Human Leukocyte Antigen (HLA) class I presented viral peptides (class II data in a forthcoming study). Then, at the population level, we performed T-cell repertoire sequencing on 1,015 samples (from 827 COVID-19 subjects) as well as 3,500 controls to identify shared "public" T-cell receptors (TCRs) associated with SARS-CoV-2 infection from both CD8 and CD4 T cells. Collectively, our data reveal that CD8 T-cell responses are often driven by a few immunodominant, HLA-restricted epitopes. As expected, the T-cell response to SARS-CoV-2 peaks about one to two weeks after infection and is detectable for several months after recovery. As an application of these data, we trained a classifier to diagnose SARS-CoV-2 infection based solely on TCR sequencing from blood samples, and observed, at 99.8% specificity, high early sensitivity soon after diagnosis (Day 3-7 = 83.8% [95% CI = 77.6-89.4]; Day 8-14 = 92.4% [87.6-96.6]) as well as lasting sensitivity after recovery (Day 29+/convalescent = 96.7% [93.0-99.2]). These results demonstrate an approach to reliably assess the adaptive immune response both soon after viral antigenic exposure (before antibodies are typically detectable) as well as at later time points. This blood-based molecular approach to characterizing the cellular immune response has applications in vaccine development as well as clinical diagnostics and monitoring.


Assuntos
Doença Aguda , Viroses , COVID-19
6.
researchsquare; 2020.
Preprint em Inglês | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-51964.v1

RESUMO

We describe the establishment and current content of the ImmuneCODE™ database, which includes hundreds of millions of T-cell Receptor (TCR) sequences from over 1,400 subjects exposed to or infected with the SARS-CoV-2 virus, as well as over 135,000 high-confidence SARS-CoV-2-specific TCRs. This database is made freely available, and the data contained in it can be downloaded and analyzed online or offline to assist with the global efforts to understand the immune response to the SARS-CoV-2 virus and develop new interventions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA